Measuring the Total-Factor Carbon Emission Performance of Industrial Land Use in China Based on the Global Directional Distance Function and Non-Radial Luenberger Productivity Index
نویسندگان
چکیده
Industry is a major contributor to carbon emissions in China, and industrial land is an important input to industrial production. Therefore, a detailed analysis of the carbon emission performance of industrial land use is necessary for making reasonable carbon reduction policies that promote the sustainable use of industrial land. This paper aims to analyze the dynamic changes in the total-factor carbon emission performance of industrial land use (TCPIL) in China by applying a global directional distance function (DDF) and non-radial Luenberger productivity index. The empirical results show that the eastern region enjoys better TCPIL than the central and western regions, but the regional gaps in TCPIL are narrowing. The growth in NLCPILs (non-radial Luenberger carbon emission performance of industrial land use) in the eastern and central regions is mainly driven by technological progress, whereas efficiency improvements contribute more to the growth of NLCPIL in the western region. The provinces in the eastern region have the most innovative and environmentally-friendly production technologies. The results of the analysis of the influencing factors show implications for improving the NLCPIL, including more investment in industrial research and development (R&D), the implementation of carbon emission reduction policies, reduction in the use of fossil energy, especially coal, in the process of industrial production, actively learning about foreign advanced technology, properly solving the problem of surplus labor in industry and the expansion of industrial development.
منابع مشابه
Efficiency and productivity change in Taiwan's hospitals: a non-radial quality-adjusted measurement
This study measures the quality-adjusted hospital efficiency and productivity index of a production unit. We propose a non-radial output-oriented directional distance function approach to analyze Taiwan’s hospital productivity, which embeds the quality of care and environment variables simultaneously. There are two major advantages of this model. First, it considers all the radial and nonradial...
متن کاملIndustry Efficiency and Total Factor Productivity Growth under Resources and Environmental Constraint in China
The growth of China's industry has been seriously depending on energy and environment. This paper attempts to apply the directional distance function and the Luenberger productivity index to measure the environmental efficiency, environmental total factor productivity, and its components at the level of subindustry in China over the period from 1999 to 2009 while considering energy consumption ...
متن کاملMeasuring the Performance of Industrial Green Development Using a Non-Radial Directional Distance Function Approach: A Case Study of Jiangxi Province in China
The industrial sector is a major contributor to resource consumption and environmental pollution in China. The energy-intensive industrial development and energy structure are dominated by coal, which has produced an enormous amount of industrial pollutants in China, and put great pressure on the ecological environment. Hence, improving the performance of industrial green development (PIGD) has...
متن کاملA novel radial super-efficiency DEA model handling negative data
Super-efficiency model in the presence of negative data is a relatively neglected issue in the DEA field. The existing super-efficiency models have some shortcomings in practice. In this paper, a novel VRS radial super-efficiency DEA model based on Directional Distance Function (DDF) is proposed to provide a complete ranking order of units (including efficient and inefficient ones). The propose...
متن کاملA Modified Directional Distance Formulation of DEA with Malmquist Index to Assess Bankruptcy
Bankruptcy in the same amount of time and history is very rampant and therefore the vision of the future can be prevented. Using data envelopment analysis (DEA) and malmquist index can precise evaluating of the performances of many different kinds of decision making units (DMU) such as hospitals, universities, business firms, etc. In this paper, we will modify directional distance formulation o...
متن کامل